首页 > 教育资讯 > 正文

成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023

2024-03-27 09:59:07 | 小熊教育

小熊教育小编给大家带来了成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023相关文章,一起来看一下吧。

本文目录一览:

成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023

2022年成人高考考试真题及答案解析-高起点《数学(文》?

【成考快速报名和免费咨询: 】湖北成人高考网分享:2022年成人高考考试真题及答案解析-高起点《数学(文》 ,答案来自考生回忆(后期持续更新中),仅供参考。 一、选择题(本大题17小题,每小题5分,共85分,在每小题给出四个选项中,只有一项是符合题目要求的)
1. 设集合M={Hx-2|2},则MnN=( )
A. {x12}
C.{x2
答案:C
2. 设函数f(x)=x²,则f(x+1)( )
A.x²+2x+1 B.x²+2x C.x²+1 D.x²
【答案】A
3. 下列函数中,为奇函数的是( )
A.y=cox B.y=sinx C.y=2* D、y=x+1
【答案】B
4.设a是第三象限角,若cosa=-根号2/2,则sina=( )
A、根号2/2 B、1/2 C、-1/2 D、-根号2/2
【答案】D
5.函数y=x²+1(x≤0)的反函数是( )
A.y=-根号x-1(x≥1) B.y=根号x-1(x≥1) C.y-根号x-1(x≥0) D.-根号x-1
【答案】B
6.已知空间向量ijk为两两垂直的单位向量,向量a=2i+3j+mk,若|a|=根号13,则m=
A.-2 B.-1 C.0 D.1
【答案】C
7. 给出下列两个命题:
①如果一条直线与一个平面垂直,则该直线与该平面的任意一条直线垂直
②以二面角的棱上任意一点为端点,在二面角的两个面内分别做射线,则这两条射线所成的角为该二面角的平面角
则:
A ①②都为自命题 B ①为自命题,②为假命题 C ①为假,②为真 D ①②都假
【答案】B
二、填空题(本大题共4小题,每小题4分,共16分)
18. 点(4,5)关于直线y=x的对称点的坐标为(5,4) 。
19. log,3+10g,5/3-10g,5/8=(3)
20.某校学生参加一次科技知识竞赛,抽取了其中8位同学的分数作为样本数据如下:90,90,75,70,80,75,85,75,则该样本的平均数为(80)
21. 设函数f(x)=xsinx,,则f'(x)=sinx+xcosx
三、解答题(本大题共4小题,共49分,解答应写出推理、演算步骤)
22. 在△ABC中,B=120°,BC=4,△ABC的面积为4√3,求AC
【答案】AC=4√3
23. 已知a、b、c成等差数列,a、b、c+1成等比数列,若b=6,求a和c
【答案】a=4 , c=8
24.已知直线1的斜率为1,1过抛物线L:x²=1/2y焦点,且与L交于A、B两点。
(1)求1与L的准线的交点坐标;
(2)求|AB|
【答案】更新中
25.设函数(x)=x3-4x
(1)求:f‘(2)
(2)求f(x)在区间[-1,2]的最大值与最小值
【答案】更新中
以上就是全部内容,更多内容请敬请关注湖北成考网( www.crgk.hb.cn ),更多湖北成考实时资讯,敬请关注猎考网。

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料:

成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023

求解一道高考数学填空题,题目如下,关于函数零点问题的,2014年天津文科14题,不胜感激啊,要思路和过程

这个题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.

由y=f(x)-a|x|得f(x)=a|x|,利用数形结合即可得到结论。

解: 由y=f(x)-a|x|=0得f(x)=a|x|,做出函数y=f(x),y=a|x|的图像,当a≤0时,不满足条件,所以a>0.这是详细的答案 已知函数f(x)=|x²+5x+4|,x≤0   2|x-2|,x>0,若函数y=f(x)-a|x|恰有4个零点,则实数a的取值范围

仔细琢磨下答案,这种题基础还是很重要的,掌握好基础知识后,举一反三,分析的时候一种情况一种情况的来,不要搞乱了,希望对你有所帮助,加油~ 有用的话希望给个采纳哦!

成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023

高考数学知识点2023

小熊教育(https://www.xxjiaoyu.com)小编还为大家带来高考数学知识点2023的相关内容。

高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2023有哪些?一起来看看高考数学知识点2023,欢迎查阅!

高中数学各知识点公式定理记忆口诀

集合与函数

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

三角函数

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

不等式

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

数列

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

复数

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 小熊教育

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

立体几何

点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

平面解析几何

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者―一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三数学 复习重要知识点

知识点1

1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

知识点2

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

三、知识扩展

1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

高考数学复习重点 总结

第一,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二,平面向量和三角函数

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三,数列

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四,空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

第五,概率和统计

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六,解析几何

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七,押轴题

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点2023相关 文章 :

★ 2021年数学高考知识点

★ 高中数学知识点总结归纳最新

★ 高考数学知识点大全

★ 高考数学知识点总结归纳

★ 高考数学知识点归纳整理

★ 高考数学知识点总结最新整理

★ 2020高考数学知识点总结大全

★ 高考数学必考知识点最新整理

★ 2020高考数学知识点大全

★ 2020高考文科数学知识点

以上就是小熊教育小编给大家带来的成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023,希望能对大家有所帮助。更多相关文章关注小熊教育:www.xxjiaoyu.com

免责声明:文章内容来自网络,如有侵权请及时联系删除。
与“成人高考考试真题及答案解析-高起点《数学(文》? 高考数学知识点2023”相关推荐
辽宁高考历史答案解析及试卷汇总 上海高考各科答案解析及真题试卷(上海高考)
辽宁高考历史答案解析及试卷汇总 上海高考各科答案解析及真题试卷(上海高考)

2022年辽宁高考历史答案解析及试卷汇总2022年全国高考将在6月7日开考,相信大家都非常想要知道辽宁高考历史科目的答案及解析,我就为大家带来2022年辽宁高考历史答案解析及试卷汇总。2022年辽宁高考答案及试卷汇总点击即可查看大家可以在本文前后输入高考分数查看能上的大学,了解更多院校详细信息。一、辽宁高考历史真题试卷(考后更新)目前试卷暂

2024-01-26 08:00:22
上海高考各科答案解析及真题试卷(上海高考) 辽宁高考历史答案解析及试卷汇总
上海高考各科答案解析及真题试卷(上海高考) 辽宁高考历史答案解析及试卷汇总

2022年上海高考各科答案解析及真题试卷(2022上海高考)2022上海高考非常重要,本文介绍汇总整理2022上海高考各科试卷及答案,包括2022上海高考数学答案、上海高考语文答案、上海高考英语答案等。2022上海高考将于2022年7月7日开始,各科考试结束后,本文将尽快更新各科答案,各位同学可以持续关注本文。也可以在本文前后,输入分数查看全国能上的大学,以及查看2022年高考其

2024-02-16 18:34:51
高考作文重庆真题解析(附、作文题) 广东高考各科真题及参考答案汇总
高考作文重庆真题解析(附、作文题) 广东高考各科真题及参考答案汇总

2022高考作文重庆真题解析(附2020、2021作文题)本期为大家第一时间整理2022高考作文重庆题目相关内容,一起来看看2022重庆新高考语文作文真题解析吧,最后为大家附上2020、2021年高考作文题。重庆2022年高考语文使用的是全国新高考Ⅱ卷,除重庆外,辽宁、海南也使用的是一样的全国新高考二卷。一.2022年重庆高考语文作文题目(新高考Ⅱ卷)试题内容:

2024-01-16 06:58:33
2024政治高考试题 成都三诊文综政治试卷及答案解析
2024政治高考试题 成都三诊文综政治试卷及答案解析

高考推荐几套难的卷子,最好选择题也很难,网上卖的,在线等?1.《新课标高考数学试题集》(第三版):这套试题集包含了高考数学的全部知识点,每一道题都有详细的解析,适合高考复习。2.《新课标高考物理试题集》(第三版):这套试题集包含了高考物理的全部知识点,每一道题都有详细的解析,适合高考复习。3.《新课标高考化学试题集》(第三版):这套试题集包含了高考化学的全部知识点,每一道题都有

2024-02-13 20:34:58
高考文科数学考试范围 高考数学必考知识点
高考文科数学考试范围 高考数学必考知识点

2023新高考数学考点2023新高考数学考点如下:1、集合与命题:集合的概念与运算、命题、充要条件。2、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。3、函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。4、三角比与三角函数:有关概念、同

2024-02-04 16:32:54
高考数学直线方程知识点总结大全 高考数学知识点2023
高考数学直线方程知识点总结大全 高考数学知识点2023

高考数学直线方程知识点总结大全数学的知识点很乱很杂,高考数学题总能糅合进很多知识点,学好基础知识点很重要,下面就是我给大家带来的高考数学直线方程知识点总结大全,希望大家喜欢!目录高考数学直线方程知识点总结如何提高高考数学成绩高考前需要注意什么高考数学直线方程知识点总结1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的

2024-01-27 14:57:16
高考真题卷2024英语 甘肃高考英语卷真题试卷答案解析(WORD文字版)
高考真题卷2024英语 甘肃高考英语卷真题试卷答案解析(WORD文字版)

2022全国新高考II卷英语真题高考结束之后,各位考生和家长最想知道的就是考生考的怎么样,有很多考生在考完很着急想要知道试题答案从而进行自我估分,下面是我分享的2022全国新高考II卷英语真题,欢迎大家阅读。2022全国新高考II卷英语真题2022全国新高考II卷英语真题还未出炉,待高考结束后,我会第一时间更新2022全国新高考II卷英语真题,供大家对照、估分、模拟使用。

2024-03-06 10:47:44
2023新高考数学考点(高考数学复合函数知识点归纳)
2023新高考数学考点(高考数学复合函数知识点归纳)

2023新高考数学考点2023新高考数学考点如下:1、集合与命题:集合的概念与运算、命题、充要条件。2、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。3、函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。4、三角比与三角函数:有关概念、同

2023-12-28 19:17:10